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Chapter 1

Introduction

Lasers are ubiquitous in modern technology, from laser printers and barcode scanners,

to land survey equipment and optical communication systems. Lasers are also used

extensively in scientific research across several domains, including physics, biology,

chemistry, mechanical engineering, and space science. Each research area has its

own specific requirements for a laser’s operating parameters, such as the wavelength,

linewidth, tunable frequency range, available optical power, and polarization purity.

Atomic, molecular, and optical (AMO) physics experiments [15, 16], and quantum

instruments that rely on the interaction between light and matter [12, 14], often have

the most stringent requirements on these parameters.

As an example, consider the requirements for atomic fountain clocks based on

laser-cooled cesium atoms. These quantum clocks which currently serve as the pri-

mary standard for the definition of the SI second [13] require continuous-wave lasers

operating at precisely 852.347275 nm, with a linewidth < 1 MHz, frequency tuning

range > 500 MHz, optical power of approximately 200 mW, and a polarization purity

> 25 dB (where 0 dB represents completely random polarization). These challenging

conditions must also remain “stable” over extended measurement periods of weeks

to months, which is a crucial factor when contributing to international timebase and
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frequency standards.

Most AMO physics experiments involve the excitation of atoms with light in

some way. Many chemical species have optical transitions in the visible to near

infrared range of 500–900 nm and since the invention of the laser in 1960, a variety

of coherent light sources have been developed that cover this range. However, in the

mid-1990s semiconductor diode lasers [18] began gaining popularity and have now

been adopted by most atomic physicists. Due to their low cost, simplicity, wavelength

coverage, and relatively good performance characteristics (i.e., optical powers of tens

of milli-watts and linewidths around 1 MHz), they have become the ideal choice for

addressing resonances in many species of atoms and molecules. However, the key

aspect in most of these experiments is the ability to precisely tune and stabilize the

laser’s operating frequency.

The degree to which the laser’s frequency must be stabilized depends on the

application. For instance, the near-infrared transitions in hot gases can be broadened

to > 1 GHz by the thermal distribution of velocities. A laser stabilized at the 1 GHz

level is often sufficient to perform many types of experiments. However, the width

of the transitions in ultra-cold gases is given by the natural linewidth (typically 5-10

MHz for alkali metals). Thus, for the laser-cooled cesium clock mentioned above,

the laser must be stabilized to a much lower level than in a hot gas.

In this thesis, we describe an approach to stabilize a commercial diode laser

operating at 780 nm to a hyperfine transition in a room temperature rubidium (Rb)

gas. Using Doppler-free absorption spectroscopy, we observe narrow spectral lines

that serve as optical references to lock the laser. By modulating the frequency of the

laser and feeding the resulting absorption signal into a lock-in amplifier, we generate

an error signal with a zero-crossing at the peak of the spectral line. Inspired by similar

work [17], this error signal is sent to a microcontroller that runs a digital proportional-

integrator (PI) control algorithm and generates a feedback signal for the laser. A
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digital PI controller offers a compact format and flexibility in changing parameters

and implementing sophisticated algorithms, compared to their counterparts in analog

controllers. We discuss how we characterize this closed-loop feedback system in

terms of both short-term and long-term relative frequency stability, and we report

its performance. This work is a crucial first step toward the realization of a laser-

cooled source of 87Rb atoms in the recently constructed laboratory for Quantum

Sensing and Ultracold Matter (QSUM) at UNB.

The remainder of this thesis is organized as follows. In Chapter 2, we present

what is Doppler free spectroscopy and how to use it to obtain reference optical

frequency for our locking system. In Chapter 3, we describe the set up involved and

how it is used to lock the laser used to the reference optical frequency. In Chapter

4, we analyze how our lock reacts to different parameters, what are the optimal

parameters to ensure the fastest and the most stable locking and the short-term and

the long-term stability of the relative frequency. Finally, we provide our conclusions

and prospects for future work in Chapter 5.
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Chapter 2

Absorption Spectroscopy in

Rubidium

2.1 Principles of Atomic Spectroscopy

Atoms consist of a positively-charged nucleus of protons and neutrons surrounded by

negatively-charged electrons that are electromagnetically bound to the nucleus. Due

to the quantum mechanical properties of electrons, only specific energies are allowed

for these bound electron orbits. This gives rise to discrete energy levels known as

electronic states. The energy spacing between these states is defined by the specific

makeup of the atom (i.e. the number of protons, neutrons and electrons), and is not

“easily” changed. Hence, atomic states act as unique quantum signatures specific

to a given species. This fact enables astronomers to identify the chemical makeup

of distant planets and stars simply by measuring their atomic spectra. Similarly,

atomic energy levels can act as absolute references for microwave oscillators, atomic

clocks, and other instruments.

Electrons in an atom at rest will tend toward the lowest energy configuration,

which is known as the ground state. Electrons can transit between the ground state
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and a higher energy “excited state” by absorbing energy equal to the spacing be-

tween those states, ∆E. This energy corresponds to one quantum of electromagnetic

radiation (known as a photon) at specific frequency ν that is proportional to ∆E

through Planck’s constant h:

∆E = hν = hc/λ.

Here, λ is the wavelength of the photon, and c is the speed of light. For most atoms,

the energy spacing between the ground state and first excited state corresponds to

a frequency of hundreds of terahertz (ν ' 5 × 1014 Hz), hence it is often more

convenient to discuss in terms of an optical wavelength (λ = c/ν ' 600nm).

Electrons can go to a higher energy state by absorbing a photon or go to a

lower energy state by emitting a photon in a random direction (a process known

as spontaneous emission). The electron transitions can be observed by shining a

white light source with a continuous range of frequencies on an atomic gas, as shown

in Fig.(2.1) . Some frequencies will be absorbed by the gas. These correspond to

the “resonant frequencies” of the atom, and will appear both as dark lines in the

transmitted light spectrum and bright lines in the emitted spectrum.

An alternate method to observe atomic resonances is to pass a laser beam with a

single optical frequency through the atomic gas. As the laser’s frequency is scanned

in time, absorption dips or emission peaks can be measured. One can then make

a direct correspondence between the known laser frequency and these spectral fea-

tures to precisely determine the resonance frequency of the atom. For a laser beam

propagating through an atomic gas, it will address different classes of atomic veloc-

ities. When the laser frequency is below resonance, all the atoms going against the

laser beam will see the beam blue-shifted due to the Doppler effect. Some atoms

will see the blue-shifted beam in the proper resonance to make the transition. The

same is valid for when the scan is above resonance. Atoms going in the same di-
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Figure 2.1: Emission and absorption lines of a hypothetical atomic gas. Taken from
Ref. [11]

rection as the laser will see it red-shifted, giving some of them the right energy to

transition. So scanning the laser frequency around resonance can address a range of

velocity classes. A gas of atoms at equilibrium with their surroundings will exhibit a

Maxwell-Boltzmann distribution of velocities. This Gaussian distribution has a 1/e

velocity spread of:

σv =
√

2kBT/M,

where kB = 1.38 × 10−23 J/K is the Boltzmann constant, T is the temperature of

the gas, and M is the mass of the atom. Depending on the atomic gas’s temper-

ature, (higher temperatures widen the range of velocities present in the sample),

the absorption signal corresponding a single electronic transition will take the form

of a Gaussian lineshape centred at the resonance. This effect, where the width of

the atomic resonance scales as the square-root of the temperature, is called Doppler

broadening of spectral lines. For a gas at room temperature, the Doppler-broadened

linewidth is ∆D ' σv/λ = 500 MHz. For many species, this is larger than the

spacing between energy levels, making each level impossible to resolve. Cooling the

atomic gas to a few kelvins is a potential solution to this problem as it will reduce
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Figure 2.2: Example of a hypothetical (a) emission and (b) absorption spectrum of
rubidium atomic vapour. Taken from Ref. [7].

the width of the velocity distribution. However, this method is expensive and is not

suitable for most atomic species because they condense into liquid or solid form at

such temperatures. There is a simple and effective method to obtain a spectrum

that is velocity-independent, and therefore free of Doppler broadening. We discuss

this method in the next section.

2.2 Doppler-Free Absorption Spectroscopy

To obtain an absorption signal that is free of Doppler broadening we use two beams

with the same frequency, one with a high-intensity (pump beam) while is other is

with a low-intensity (probe beam), traveling in opposite directions in the same atomic

sample. Figure (2.3) illustrates this scenario for an idealized atom with only one

possible electronic transition. The strong pump beam will saturate the transition,

maintaining approximately 50% of the atoms on resonance with the pump in the

excited state. Let’s assume these atoms are at velocity +v, as shown in Fig. (2.3)(a)).

The weak probe beam, which is at the same frequency as the pump but traveling
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Figure 2.3: Illustration of Doppler-free absorption. A weak probe beam and a
counter-propagating strong pump beam excite a gas with a Gaussian distribution
of velocities. These idealized atoms have only two levels: a ground and excited state
with resonance frequency ν0. (a) When the laser is below the resonance (νL < ν0),
neither beam excites the same velocity class of atoms. (b) When the laser is on
resonance (νL = ν0), both beams address the zero-velocity class and create a “dip”
in the absorption signal. Taken from Ref. [7].

in the opposite direction, will excite atoms with the opposite velocity class as the

pump (−v). Hence, for non-zero velocities, neither beam addresses the same atoms.

So in a graph showing the density of atoms in the excited state against the laser

frequency Fig.(2.3), we would find a Maxwell-Boltzmann distribution representing

all the different classes of velocity that got excited. The only atomic class both

beams will address is the set of atoms that have a zero-velocity component in the

direction of the beams. In this case, the zero-velocity atoms excited by pump become

partially transparent to the probe—letting more probe light into the detector. This

creates a “dip” in the absorption signal when the laser frequency equals the resonance

frequency of the atom νL = ν0. Since each atom’s resonance frequency is unique, this

simple and reliable method allows us to obtain a narrow spectral line, independent

of the temperature of the sample, to which we can “lock” our laser.

2.2.1 Crossover Transitions

Let the laser’s frequency be ν, where ν is between two transition frequencies ν1 and

ν2, where ν1 < ν < ν2. As the pump beam is propagating through the Rb cell, it
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will excite two different velocity classes that sees the ν blue-shifted (if they are going

opposite the beam) to ν2 or red-shifted (if they are going along the beam) to ν1. The

same principle applies for the probe beam. Note that the velocity class that sees the

pump beam red-shifted to ν1 might not be the same velocity class seeing the probe

beam blue-shifted to ν2. An example, if ν were close to ν1 the velocity component

of velocity class does not need to be large in value to see the pump beam red-shifted

to ν1, the same velocity class velocity component will not be enough to see probe

beam blue-shifted to ν2. The only instance both beams will excite the same velocity

class if, ν = νc where,

νc =
ν1 + ν2

2
. (2.1)

Then when ν = νc, the pump beam will excite the atoms to ν1 and ν2, while the probe

beam goes thorough the excited atoms without being absorbed, showing an extra

peak, between the transitions peaks. This peak is called the crossover transition. It

only happens when two transitions share the same ground state and are separated

by frequencies less than the Doppler width.

2.3 Electronic Structure of 85Rb and 87Rb

We use one of the electronic transitions in rubidium as a reference frequency to

lock our laser. Rubidium is chosen for several reasons. First, it has a low melting

point of ∼ 40◦ C, and therefore has a sufficient vapour pressure (3 × 10−7 Torr)

at room temperature. This feature allows us to do all spectroscopy experiments

in a glass cell under standard laboratory conditions. Second, rubidium is an alkali

metal, which means it has one valence electron with a simple energy level structure.

Third, rubidium has two isotopes, 85Rb (stable) and 87Rb (a lifetime of ∼ 5 × 1010

years), with a natural abundance in a 3:1 ratio, where both have similar but distinct

energy levels, as shown in Fig.(2.4). These isotopes offer several choices of resonance
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frequencies at 780 nm spanning approximately 7 GHz that can serve as potential

references for our laser. Finally, and perhaps most importantly, rubidium will be

used in future experiments to construct quantum sensors in Dr. Barrett’s lab. For

that work, it will be crucial to have frequency-stabilized lasers operating close to the

various transitions in rubidium. We now describe the basic energy level structure

of rubidium shown in Fig.(2.4). For notation purposes, we define n, the principal

quantum number, L, the electron’s orbital angular momentum quantum number,

S, the electron’s spin angular momentum, J, a quantum number representing the

magnitude of the electron’s total angular momentum (J=L+S), I, the sum of orbital

and spin angular momentum of all nucleons, and F, the total of all the angular

momentum of the atom F=J+I.

The valence electron in rubidium lies in a ground state with principal quantum

number n = 5. The ground state of both isotopes is labelled 5S1/2, and their first

excited states are 5P1/2 and 5P3/2, where the labels “S” and “P” correspond to

values of the electron’s orbital angular momentum (L = 0 and 1, respectively), and

the subscripts 1/2 and 3/2 refer to the values of J. For this work, we focus on the

5S1/2 → 5P3/2 transition in rubidium (known as the D2 line), which occurs at 780.24

nm [4, 5]. This wavelength is within the tuneable range of our diode laser. The D1

line of rubidium (5S1/2 → 5P1/2) occurs much further away at 795 nm.

The splitting of the spectral lines in an atom is called fine structure, and it is

due to spin-orbit coupling and the relativistic correction of the Hamiltonian. The

positively charged nucleus orbiting the electron (from the reference frame of the

electron) creates a current loop that induces a magnetic field. The magnetic field

causes torque on the spinning electron to align the electron’s magnetic moment with

it; this shifts the energy levels, depending on L and S. For 85Rb and 87Rb, we have

n = 5 and L = 0 in the ground state. Therefore J = 1/2, hence the ground state

for both is called 5S1/2. For the excited state of both isotopes, L = 1, so J ranges
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52S 1/2

52P 3/2

780.241 209 7 nm
384.230 484 5 THz

6.8347 GHz

4.2717 GHz

F  = 2

F  = 1

72.9 MHz

266.7 MHz

156.9 MHz

72.2 MHz

F  = 3

F  = 2

F  = 1

F  = 0

780.241 368 3 nm
384.230 406 4 THz

3.0357 GHz

1.7708 GHz

F  = 3

F  = 2

20.4 MHz

120.6 MHz

63.4 MHz

29.4 MHz

F  = 4

F  = 3

F  = 2
F  = 1

Modi�ed from:  “Rubidium 85 D Line Data” and “Rubidium 87 D Line Data” by Daniel Adam Steck, 2009
                University of Oregon - http://steck.us/alkalidata/
Note: Inter-manifold level spacings are approximately to scale.  No scale comparison should be made between 
manifolds or to the optical transition.  Level spacings are listed to nearest 0.1 MHz only.

87Rb 85Rb

Figure 2.4: The hyperfine structure of 85Rb and 87Rb from 5S1/2 to 5P3/2. Taken
from Ref. [4, 5]
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from J = 1/2 to J = 3/2, giving the two excited states 5P1/2 and 5P3/2 (Fig.(2.6)).

Diving a step deeper, we find the hyperfine structure. The hyperfine structure is

due to the spin-spin coupling between the electron and the nucleus. The spin of the

positively-charged nucleus and the negatively-charged electron each create a weak

magnetic field that generates a force between these particles. This creates a shift up

or down of the energy level, depending on the spin vector orientation of the electron

and the nucleus. For 85Rb I = 5/2 and for 87Rb I = 3/2. So, in 85Rb’s ground state,

F ranges from F = 1 to F = 2, while 87Rb’s F ranges from F = 2 to F = 3. In

the 5P3/2 excited states of 85Rb, F = 1, 2, 3 and 4 for 5P3/2. Similarly, in the 5P3/2

excited state of 87Rb, F = 0, 1, 2 and 3 for 5P3/2 Fig.(2.4). We will focus primarily

on the strongest transitions on the D2 line of rubidium, that is the F = 3→ F′ = 4

transition in 85Rb and F = 2→ F′ = 3 transition in 87Rb.

2.4 Spectroscopy Measurements in Rubidium

To get the Doppler-free spectrum of Rubidium, two beams of the same frequency go

against each other in a Rubidium vapour cell. The main laser beam gets split into

two using a glass plate to get two weak beams of the same intensity. Passing the laser

beam through a glass plate gets 4% of the laser reflected from each surface, while

the rest passes through the plate. The beam that transmits through the plate (i.e.,

the pump beam, Fig.(2.5) beam 2) is reflected by two mirrors Fig.(2.5), then gets

reflected by a polarizing beam splitter (PBS) and passes through the vapour cell.

One of the beams reflected off the glass plate (i.e., the probe beam, Fig.(2.5) beam

1), is aligned along the pump beam through the vapour cell. A half-wave plate is

placed between the cell and the PBS, which allows us to change the polarization of the

probe beam such that it transmits through the PBS onto the photodiode. The probe

beam shows the Doppler-broadened transitions including Doppler-free peaks within

12
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Figure 2.5: The optical setup of Doppler-free saturated absorption spectroscopy. The
narrow peaks correspond to Doppler-free hyperfine transitions. Note: the second
photodiode is not used in this experiment, however the subtraction procedure will
be done in the future experiments to reduce the sensitivity of the lock to laser power
fluctuations. Taken from Ref. [6]

the Gaussian background. The beam that reflects off the plate (i.e., the reference

beam, beam Fig.(2.5) beam 3), passes through the cell, half-wave plate, and the PBS

and falls on another photodiode, containing only the Doppler-broadened peaks. The

difference between the photodiodes signals gives the hyperfine structure without the

Gaussian-shaped Doppler background.

Figure (2.6) shows the D2 absorption spectrum, this is achieved by scanning the

laser’s frequency over a range of ∼ 8 GHz around 85Rb and 87Rb transitions from

5S1/2 to 5P3/2 and capturing the data of the probe beam. Each Doppler-broadened

peak in Fig.(2.6(a)) represents a set of hyperfine transitions in one of the isotopes.

The small dips in the Doppler peaks show individual hyperfine resonances for the

zero-velocity class. By decreasing the range of the laser’s scan we zoom in on the

85Rb F = 3→ F ′ = 1, 2, 3, where we show most of the hyperfine transitions (except

to the F ′ = 2 transition) in the last graph. The sub-Doppler peaks in these data are

13



fitted as Lorenztian functions, with a Gaussian background, to find the conversion

between the scan’s time scale and the laser’s frequency. Using F ′ = 4 and the

crossover (2,4), we found that 9.2 MHz corresponds to 10 ms. With this ratio, the

measured linewidth of the F = 3 → F ′ = 4 transition was found to be ∼ 12 MHz,

which is approximately twice the natural linewidth in rubidium (ΓN = 6 MHz). This

widening in the linewidth is likely due to the intensity of the laser which forces more

atoms to the excitation state, broadening the linewidth of a transition, this effect is

called Power Broadening[8].
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a)

b)

c)

d)

Figure 2.6: (a) 85Rb and 87Rb transitions from 5S1/2 to 5P3/2. (b)-(d) Zooming in
on the hyperfine structure of 85Rb F = 3→ F ′ = 2, 3, 4. (c) The labels next to each
peak are the values of F where (3,4), (2,4) and (2,3) are crossover peaks. The 92
MHz represents the frequency separation between the transition to F = 4 and the
crossover (2,4).
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Chapter 3

Laser Frequency Stabilization

3.1 Background

All lasers are susceptible to environmental factors that affect their operating fre-

quency. This is dominated by length contraction/expansion of the laser cavity due

to ambient temperature variations. To operate at a single optical frequency, the

temperature of the cavity must be actively stabilized.

Modern semiconductor diode lasers come in a compact form factor (e.g. the

butterfly mount, Fig.(3.1). Due to their small size and low thermal inertia, they

are even more susceptible to temperature variations than their larger counterparts.

Similar to light-emitting diodes, these lasers operate by passing a current across the

diode’s P-N junction, where electrons combine with holes and emit light over a narrow

range of wavelengths [1]. Both the optical frequency and power are determined by

this “pump” current, hence a stable and low noise current source is paramount to

achieving a “narrow linewidth” single-frequency laser.

Our laser (a distributed feedback diode laser operating at 780 nm) is mounted on

a commercial circuit board integrated with low-noise current and temperature con-

trollers. This “laser controller” allows simple control of the current and temperature
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Figure 3.1: Left) shows a prototype of a butterfly type one laser. Middle) Toptica
Eagleyard laser used in our setup. Right) Laser controller used in our setup. Taken
from Ref.[1, 2, 3]

through both internal and external signals.

To stabilize the laser’s operating frequency we use the following general approach.

We first obtain an “absolute” atomic reference signal that corresponds to the targeted

optical frequency. From this reference signal we derive an error signal that provides

a voltage proportional to how far the actual frequency is from the target. Finally,

the error signal is input to a controller that generates a feedback signal for the laser.

Through feedback signal, the controller actively stabilizes the laser on the target

frequency making it highly resilient against environmental effects. We now describe

the rest of these steps in more detail.

3.1.1 The Reference Signal: Doppler-Free Spectroscopy

As discussed in chapter 2, we use Doppler-free rubidium spectroscopy to obtain

reference signal corresponding to an absolute optical frequency at 780 nm. Here, we

describe how this is realized in practice. Figure (3.2) shows the optical setup of the

spectrometer.

To observe the rubidium spectrum, the laser current is scanned back and forth in

frequency using a triangle wave generator with a period of 4 Hz. The amplitude of

the scan determines the span of the frequency range, and the scan offset determines

the laser’s central operating frequency. To hone in on the targeted transition (the

F = 2 → F ′ = 2(3) crossover in 87Rb), we initially scan over a 1 GHz range to
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Figure 3.2: The experiment schematics (top) and setup (bottom) for Doppler-
free spectroscopy [6]. Inclined line/M = mirror, Ovals/(λ/n) = waveplate, dou-
ble line/thick rectangle = glass plate, square with a line = Polarized Beam Splitter
(PBS), bright red/grey lines = pump beam and pale red/dashed lines = probe beam.
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Figure 3.3: 87Rb transition from F=2 to F ′=3. The (1,2), (1,3) and (2,3) are the
crossover peaks.

identify several saturated absorption peaks, and we gradually adjust the offset while

reducing the amplitude until we are centred on the correct peak. This transition

is an ideal reference for several reasons. First, it is the strongest absorption signal

in 87Rb, and is well separated from neighbouring peaks. This makes the laser lock

more stable and robust against optical power and polarization changes. Second, it

is near the cycling transition (F = 2 → F ′ = 3) required for future laser cooling

experiments.

3.1.2 The Error Signal: Modulating the Frequency of the

Laser

Once the reference signal is obtained, the next step is to use it to derive an error

signal. Generally, an error signal is the difference between the actual value and the

desired set point of a system. In our case, the set point is the peak of the reference

signal, which represents the atomic transition frequency, and the actual value is

19



the laser’s operating frequency. The feedback controller will stabilize or ”lock” the

system to the point at which the error signal is zero. Because we wish to lock to

the peak of the reference signal, ideally the error signal should be proportional to

the first derivative of the absorption peak which feature a zero-crossing at the peak

centre. Below we describe how we obtain this signal.

To obtain a signal proportional to the first derivative of the absorption peak, we

use a frequency modulation scheme. Here, the laser’s frequency is modulated with a

small amplitude sine wave at frequency fmod = 100 kHz while slowly scanning across

the atomic resonance. This resulting absorption signal is then ”demodulated” (i.e. it

is mixed with the modulation signal and low-pass-filtered) using a lock-in amplifier

to obtain the first derivative. To illustrate how this is achieved, we use the following

mathematical model. The atomic absorption signal can be described as Lorentzian

function,

A(f) =
A0

1 + [2(f − f0)/α]2
, (3.1)

where A0 is the amplitude of the signal, f0 is the atomic resonance frequency, α is the

full width at the half maximum (FWHM) or ”linewidth” of the peak, and f is the

laser frequency. The linear scan and sinusoidal modulation of the laser’s frequency

can be modeled by:

f(t) = at+ b sin(2πfmodt), (3.2)

where a and b are constants representing the scan rate and modulation amplitude,

respectively. The modulated absorption signal is sent back to a lock-in amplifier,

where it is multiplied by a sine wave of the same frequency as the modulation plus a

controllable phase shift φ. The lock-in amplifier then averages the product of these

two signals by passing it through a low-pass filter with a cut-off frequency below the

modulation frequency. We model this filter by evaluating the time-average of this
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Figure 3.4: (a) Shows the saturated absorption around one of the peaks. Location
1) is the laser frequency before resonance, Location 2) frequency on resonance and
location 3) after resonance. (b-d) Takes the photodiode signal (solid black line) mul-
tiplies it by the modulation signal (solid gray line) giving their product (dashed black
line), where (the dashed gray line) is the sum of the product over the shown period
of time. This shows the phase between the photodiode signal and the modulation
changes between Location 1) and 3) and how that affects their product and its sum.
Taken from Ref. [6]

product:

e(t) =
1

T

∫ t+T

t

A0

1 + [2(at′ + b sin(2πfmodt′)− f0)/α]2
sin(2πfmodt

′ + φ)dt′, (3.3)

where T = 1/fmod is the period of the frequency modulation and φ is the phase shift

introduced by the lock-in amplifier.

The modulation adds minor variations to the scan, so when the laser’s frequency

is close to resonance, the laser frequency will get closer and further from resonance

with the same frequency as the modulation. This will increase and decrease the

measured intensity by the photodiode at the same rate Fig.(3.4(b)&(d)). When
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Figure 3.5: Graphical representation of: (a) The laser frequency, Eq.(3.2), (b)
Lorentzian spectrum Eq.(3.1) and (c) The error signal Eq.(3.3), with φ the same
as the phase shift of the photodiode signal. The error signal when the phase differ-
ence is (d) 90◦ (e) 180◦. Taken from Ref. [6]

the laser is on resonance, the modulation will cause the laser to oscillate around

the resonance Fig.(3.4(c)). The further the laser’s frequency is from resonance, the

smaller amplitude of the modulation affects the absorbed spectrum, compared to

when the laser is closer to resonance Fig.(3.5(b)).

When the laser is before resonance, the product is mostly above zero, so the

sum around that period will be positive. In contrast, the sum will be negative after

resonance, and it will be zero on resonance. Near the resonance frequency, the error

signal gives a measure of how far we are from resonance, which will be used by the

PID controller to generate a feedback signal Fig(3.6).
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Figure 3.6: A block digram of the setup

3.1.3 The Feedback Signal: Making a PID Controller

The microcontroller in our setup is a PID controller [10], which uses the error signal

e(t) in its feedback loop to correct for the deviations from resonance. A PID con-

troller makes corrections based on Proportional, Integrator, and Derivative terms.

The proportional term takes the current error of the system and multiplies it by a

proportional gain (Kp). The proportional term aims to decrease the error quickly,

giving the controller a short reaction time. However, a pure proportional controller

might not get the error to zero. For a system with a driving force that causes a

higher error signal, Kp will cancel out its effect, but would not get the system in

a state were the error signal is zero. An Integrator term can solve this problem by

taking the sum of the error over time and multiplying it by the integrator gain KI to

eliminate any persisting error. High KP or KI can lead to oscillations, as they keep

overshooting the zero error. The Derivative term takes the rate of change of the error

and multiplies it by a derivative gain (KD); this helps remove any oscillation in the

output, by “predicting” the system’s behaviour. The output of the PID controller
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(u(t)) is the sum of all of those terms,

u(t) = Kc

(
e(t) +

1

Ti

∫
e(t)dt+ Td

de(t)

dt

)
(3.4)

where Kc = KP , KI = Kc

Ti
for the integral time Ti and KD = KcTd for the derivative

time Td.

3.2 Main Components Involved and their Role

In this section, we discuss experimental details relevant to the laser, our control

electronics, and how we lock the laser in practice.

3.2.1 Laser

A Toptica Eagleyard (model: EYP-DFB-0780-00040-1500-BFW11-0005, type 1)

laser is connected to a Koheron (model: CTL101-1-B-400) controller. The chip

controls the current supplied to the laser and the laser’s temperature [3]. The laser

has a 780.24 nm centre wavelength and a linewidth of Full Width at Half Maximum

(FWHM)< 600 kHz with a maximum power of 40 mW [1]. The controller has a

trimmer to adjust the temperature of the laser. There is another trimmer to offset

the current supplied to the laser. The controller has two modulation inputs, a low

frequency input (DC input) that accepts between DC and 10 MHz, with a range ±1
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volt, and a high frequency input (AC input) for modulation above 1 MHz with a

gain of 20 mA/V. The DC input will accept the scan’s and the Arduino’s outputs

Fig.(3.6). The scan’s and the micro-controller outputs go through operational am-

plifiers to add their signals and rescale them to fit the DC input limits. The AC

input will accept the modulation’s output.

3.2.2 Lock in Amplifier

The lock-in amplifier serves two main purposes, the first is isolating the incoming

signal and amplifying it; the second is generating an error signal. The lock-in am-

plifier uses the signal from the probe photodiode and a reference of the frequency

of the modulation, to multiply the probe signal by a sine wave of the modulation

frequency, this will generate the error signal as discussed in section(3.1.2). To isolate

the probe signal from noise, a bandwidth of the signal is set on the lock-in amplifier.

To get the highest error signal, the phase of the sine wave (φ, in Eq.(3.3)) created by

the lock-in amplifier is changed to match the phase of the input photodiode. If the φ

is shifted by 90 degrees, the error signal will be relatively close to zero Fig.(3.5(d)).

While if the φ is shifted by 180 degrees, the error signal will be negative Fig.(3.5(e)).

How the error signal behaves with the shift in φ helps find the right φ by setting the

error signal to zero and then changing it by 90 degrees. The error signal is sent to

the microcontroller.

3.2.3 Microcontroller

An Arduino Due is used as it is a relatively cheap option for a PID controller. The

following table shows the advantages and the limitations of having a digital PID

controller. The Arduino Due has six analog inputs (ADC) and two analog outputs

(DAC) [9], each with a resolution of 12-bits (i.e., 212 = 4096 discrete input/output

values). The sampling rate for the current setup is around 60 µs, making it well
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Table 3.1: Advantages and disadvantages of digital PID control

Advantages Disadvantages

Programmable: The system can be
reprogrammed to implement different
algorithms and methods.

Limited by its clock speed.

Reconfigurable: The system can be
reconfigured to work with a different
system.

Can not perform sequences in parallel.

Low cost: The digital components
are relatively cheap as they are
industrialized for different
applications.

Limited by its ADC and DAC
resolutions.

Compact: The overall size of the
controller can be the size of a hand.

Easy and Reliable: The system can
be programmed using a high-level
programming language, giving
consistent outputs.

suited to our application.

The analog inputs can only measure from ground up to 3.3 V. The lock-in am-

plifier output is set to be from -1 to 1 V Fig.(3.8 bottom). The error signal from

the lock-in amplifier is passed through operational amplifiers Fig.(3.8 top) to change

its amplitude to 1.65 V and offset the signal by 1.65 V, so the zero output from the

lock-in amp corresponds to 1.65 V into the Arduino. This adjusts the scale such that

1 V (lock-in output) corresponds to 3.3 V (Arduino input) and -1 V (lock-in output)

to 0 V (Arduino input). As the Arduino reads the input in bits, the readings get

rescaled in volts, and the error signal is compared to the 1.65 V.

We decided not to use the derivative part in the PID in our cases (i.e. the deriva-

tive gain is set to zero.). The integrator part of the PID gets calculated by adding
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Figure 3.8: Top) A conditioning circuit that includes all the operational amplifiers
used for rescaling voltages. Bottom) A graph showing how the voltage is rescaled
from one of the setup components to another. Notice that the scan is not included
as it will contribute only millivolts to the circuit, so it can be ignored. The circuit
and the graphs were made using CircuitLab.com

the error over time. Anti-windup conditions (Algorithm(1)) are set to stop the con-

troller from railing away if the error was significant or some disruption happened to

the system, causing the error to increase drastically. The output signal (PID out) is

the sum of the proportional and the integrator terms.

The Arduino’s DAC receives data in bits, and it can only give output voltage

from 0.55 V to 2.75 V. So, the output signal gets rescaled to bits. An offset of

half the range of the bits is given to correspond to the zero error signal. Since the

laser only accepts inputs from -1 V to 1 V, the output of the Arduino gets rescaled

and offset by operational amplifiers, then gets added to the scan signal by another
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Algorithm 1: An algorithm for the feedback signal from the Arduino

Let: Proportional Gain = Gp;
Let: Integrator Gain = Gi;
Let: AccumulatedError = AccErr;
Let: Integrator Upper Limit = iLimitUp;
Let: Integrator Lower Limit = iLimitDwn;
Let: Proportional Upper Limit = pLimitUp;
Let: Proportional Lower Limit = pLimitDwn;
ReadInput← analogRead(InputP in);
Error ← (ReadInput/4095) ∗ 3.3− 1.65;
AccErr ← AccErr + Error ∗ dt;
if Gi ∗ AccErr ≥ iLimitUp then

AccErr ← iLimitUp/Gi;
end
if Gi ∗ AccErr ≤ iLimitDwn then

AccErr ← iLimitDwn/Gi;
end
/*The PID out is rescaled by dividing it by 2.2, then gets converted to bits
and added an offset of half the range of the bits.*/
OutputV alue← ((Gp ∗ Error +Gi ∗ AccErr)/2.2) ∗ 4095 + 2048;

/*Setting a limit to the Output value, not to overload the OutputPin*/
if OutputV alue ≥ 4095 then

OutputV alue← 4095;
end
if OutputV alue ≤ 0 then

OutputV alue← 0;
end
analogWrite(OutputP in,OutputV alue);

operational amplifier and sent to the laser.

3.3 Locking the Diode Laser

Finally to lock the laser on the reference resonance; the probe signal and the error

signal are displayed on an oscilloscope, this helps with the transition peak visually

Fig.(3.9(a)). Then the amplitude and the offset of the scan are adjusted to start

zooming in on the chosen reference resonance. We keep zooming in until the error

signal is almost linear Fig.(3.9(b)). Once we have a linear error signal displayed,
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the Arduino is turned on and it locks the laser to resonance by minimizing the error

signal to zero Fig.(3.9(c)). Finally the scan is turned off Fig.(3.9(d)), and the laser

is locked to the desired reference resonance.

In the next chapter we discuss how different gains affect the PID reaction to the

error signal, and the lock’s short and long term stability.
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d)

Figure 3.9: Plots showing the steps required to lock the laser to 87Rb F ′ = (2, 3). Any
discontinuity signifies the start or the end of the scan’s triangle wave. (a) Identify
the transition peaks. (b) Zoom in until the error signal is almost linear. (c) Turn
the PID on. (d) Turn the scan off.
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Chapter 4

Characterization of the Laser Lock

The previous chapter presented our approach for locking the laser to a Doppler-free

hyperfine transitions using a digital PI controller. In this chapter, we will further

characterize the performance of the locking system in terms of several metrics. These

include the response time of the lock, the optimal gains for the lock, and the short

and long-term stability. First, we discuss our approach for calibrating the error

signal. Then we present a technique to tune the gains of the PI controller. Finally,

we describe how we analyzed the short- and long-term performance of the lock.

4.1 Calibration of the Error Signal

So far, the error signal is the only measurement we have to state how far the laser

frequency is from resonance; however, the signal obtained is in volts, which in an

arbitrary scale that depends on the system’s parameters. In our case, the signal of

interest is the laser’s frequency deviation from resonance. To convert the error signal

from voltage to relative optical frequency variation, we use a scan that includes two

crossover transition peaks, as shown in Fig.(4.1). Here, the crossover F ′ = (1, 3) in

87Rb, and the crossover F ′ = (2, 3) in 87Rb are fitted to find the difference between

the centres of the two peaks in terms of the time during the scan. These peaks are
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Figure 4.1: Plots to relate the variation in the error signal with the variation in the
laser’s frequency.

separated by precisely by 78.45 MHz, which allows us to relate the time interval in

the scan to the change in the laser’s frequency. From Fig.(4.1) we found that 78.5

MHz corresponds to ≈ 360 ms, so the conversion from time to laser frequency is 220

kHz/ms. This ratio is used to find the corresponding change in the laser’s frequency

over the linear part of the error signal. Finally from Fig.(4.1), the calibration factor

for the error signal is ≈ 6.1 MHz/Volt. This relationship allows us to carry out the

stability analysis in the next sections in physical units of the laser frequency.

4.2 Measuring the Impulse Response of the Lock

We characterized how the locking system behaves with different gain settings. Based

on previous experience, my supervisor decided to set Kd = 0, as it can cause insta-
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bilities to our system. One way to probe the lock is to measure its impulse response.

This involves inducing a rapid impulse in the system and measuring how the error

signal responds under different conditions. To achieve this, we send a square wave

(impulse) signal to the laser current controller. The square wave aims to offset the

laser’s frequency in a rapid and constant manner to allow us to measure how the

lock responds. In the presence of these impulses, we expect the lock to bring the

error signal back to zero with different characteristics (e.g. decay rate, oscillation

amplitude) depending on the values of the proportional and integrator gains, GP

and GI . The proportional term, corrects for the error signal by multiplying it by Gp,

giving an output in volts. The integrator term helps in correcting the error signal by

taking its accumulation over time times the time step for each correction step times

GI . Let us call these gains with some arbitrary units KP and KI for the proportional

and the integrator term respectively.

[KP ] =
Volts of laser current modulation

Volts of error signal
,

[KI ] =
Volts of laser current modulation

(Volts of error signal)(second)
.

(4.1)

To express these gains in physical terms (i.e. optical frequency per V of error sig-

nal), we will need the calibration factor for the laser current frequency. From the

documentation of the laser and the controller we are using, the calibration, S= (1.5

GHz/mA) x (2 mA/V) = 3000 MHz/V of the current modulation. The “physical

gains” are then GP = SKP and GI = SKI , and their units are now:

[GP ] =
MHz of laser frequency

Volts of error signal
, [GI ] =

MHz of laser frequency

(Volts of error signal)(second)
. (4.2)

From eq.(3.4) we can rearrange for the integral time, TI = KP/KI . Given KP and

KI , TI becomes the integral time constant τ1, which describes the response time

of the lock. High values of τ1 means it takes longer for the lock to respond, while
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smaller values of τ1 means it takes shorter time to respond.

To model the impulse response of the error signal, we fit these data to an empirical

expression that was developed based on a trial and error basis. The expression

consists of an exponential term added to an exponential multiplied by a sine Eq.(4.3).

The first term models the response time of the lock, while the second term models

any decaying or growing oscillations, and describes the stability of the lock.

M(t) = A

[
exp

(
−t
τ1

)
+ exp

(
−t
τ2

)
sin (2πft+ φ)

]
+ c, (4.3)

Here, A is the amplitude to model, τ1 is the integral time constant, τ2 is time constant

for oscillations ( a negative τ2 describes growing oscillations while positive τ2 describes

decaying oscillations), f is the frequency of the oscillations, φ is the phase shift and

c is an offset from zero. The offset could be a results of a small potential difference

between the photodiode and the oscilloscope collecting the data. By extracting this

parameters from data sets taken with different gain settings, we are able to quantify

both the lock response time and stability. To quantify the stability of the lock we

will use the following equation,

S = exp
−3τ1

τ2

. (4.4)

Equation (4.4) aims to show how the response is acting after few τ1s. Where, rela-

tively high values of S shows instability and relatively low values, suggests stability.

S and τ1 will allow us to find the optimal settings for the lock.

4.3 Tuning the PI Controller

To tune the PI controller (i.e. to find the optimal gain settings), we surveyed the

impulse response of the lock for a variety of gain settings. Specifically, eight sets of
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Figure 4.2: Plots to show the lock response with different gains. Top) Gets the
fastest to the zero error but exhibits a lot of oscillations (KP=7.0× 10−2, KI=7.0×
10−4). Middle) Takes a long time to reach the zero error, exhibits no oscillations
(KP=1.0 × 10−3, KI= 5.0 × 10−5). Bottom) Has the smallest τ1 and exhibits no
oscillations (KP=7.0× 10−3, KI=3.0× 10−4).

proportional gains (KP= 7× 10−2, 5× 10−2, 3× 10−2, 1× 10−2, 7× 10−3, 5× 10−3,

3 × 10−3 and 1 × 10−3) each with four integrator gains (Ki= 7 × 10−4, 3 × 10−4,

9× 10−5 and 5× 10−5). The arbitrary gains can be converted to physical quantities

by multiplying them with the calibration factor S. The gains were chosen based on

previous experience aiming to show the limits of the lock and to find the optimal

gains.

Figure (4.2) shows the how the system behaves with different sets of gains. Dis-

playing τ1, Aresp = A and S. As seen, high gains cause instability and take a

relatively long time to lock; however due to the high gains Aresp is low. Low gains,
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takes long time to lock, but is the most stable. The Optimum gains plot shows the

fastest locking with high stability.
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Figure 4.3: The response time and stability of the lock, with respect to KP and KI .
The first two plots show the response time τ1 in linear and logarithmic scales. The
third plot shows the relative stability of the lock (lower values = more stable).

The surveyed data are fitted with eq.(4.3) to get τ1 and S. The first two plots

of figure(4.3) display the values of τ1, one with a linear scale and the other with

logarithmic, the third plot identifies the stability of the lock. From the logarithmic

plot, we find that for KI ≤ 1× 10−4, the response time is the slowest. From S’s plot

we notice all the values of KP ≥ 3× 10−2 are not stable. Finally, we found that the

region of KI = 3 × 10−4 and 5 × 10−3 ≤ KP ≤ 1 × 10−2, gives the most stable and

the fastest response time. From that region, the set of gains: KI = 3 × 10−4 and

KP = 7× 10−3, have the fastest response time of τ1 = 1.34± 0.05 ms.

4.4 Short-Term and Long-Term Stability

In this section, we characterize the stability of the lock at both short and long

timescales. For short timescales, we use the Power Spectral Density (PSD). By

Fourier analyzing the error signal, the PSD allows us to display the changing of

the relative optical frequency for each component of the frequencies of the Fourier
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Figure 4.4: (a) High-resolution measurement of the laser frequency variation over
380 milliseconds. (b) The Power Spectral Density (PSD) graph of the error signal
to identify noise. The white noise floor has a PSD value of 5× 10−14/

√
Hz.

transform. This will help us to identify different types of noise (pink noise, white

noise, . . . ) and the contributors to the change in the laser’s frequency.

For longer timescales, we use the Allan deviation, as it is the standard for measur-

ing frequency stability. The Allan deviation calculates the square root of the Allan

variance (a measure of frequency stability) for a specific time step. As for longer

time periods any white noise should average to zero, so, for bigger time steps the

Allan deviation keeps getting smaller in value [21].

Figure(4.4) shows what we call a high resolution dataset (4 million and 750

thousands points with a time step of 80 ns) of the changes in relative optical frequency

of the laser as it is locked with the scan off. From the PSD part of the graph, starting

from ∼ 1.2 kHz to 40 kHz the PSD shows a 1/f relationship which indicates pink

noise. The pink noise is due small fluctuations in the configuration of any defected

materials and fluctuations in the properties of semi-conductors [20]. From ∼ 200

kHz until the end of the graph, is white noise (ignoring the individual peaks), which

is mainly unavoidable electric noise, and it resembles our limit for minimizing the
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Figure 4.5: (a) High-resolution measurement of the laser frequency variation over 120
seconds. (b) The Allan deviation graph of the variation of the frequency variation
to identify the stability of the lock. The Allan deviation of the fractional frequency
variation of the short-term stability (at 1 second) is (1.35 ± 0.14) × 10−11 and the
medium term stability (at 84 seconds) is (2.74± 14)× 10−12.

noise, at PSD value of 5× 10−14/
√

Hz. The effects of the noise are ignorable as they

barely contribute to the change of the laser’s frequency. The peaks that appear after

1 MHz are noise from the current control of the laser’s controller [3]. To show the

contribution of the white noise to the variation of the laser’s frequency, over a period

of 1 MHz (from 2 MHz to 3 MHz), the change in the PSD is around 1× 10−14 (from

4× 10−14 to 5× 10−14). The relative change in the laser’s frequency σ∆f equals the

change in the PSD S∆f times the square root of the change in frequency ∆f . So,

σ∆f = 1 × 10−14 ·
√

1× 106 = 1 × 10−11. The laser’s frequency is around 384.230

THz, so the change in laser’s frequency = 1 × 10−11 · 3.8423 × 1014 = 3.8423 kHz

which is much smaller than the laser’s lindewidth (600 kHz)[1]. This shows that the

laser is highly stable on the short-term.

For the long-term stability, figure(4.5) shows another high-resolution dataset (6

million data points with a time step of 40 µs) of the laser’s frequency variation over
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120 seconds. As we expect the plot to keep decreasing over time, we fitted using a

power law to find it is decreasing with the square root of time. From the fit we were

able to obtain the the value of the Allan deviations for a small time step, 1 second

to be (1.35 ± 0.14) × 10−11, while at a medium time step like 84 seconds, we found

the deviation to be (2.74± 14)× 10−12 which is considered to quite stable. To find

the true stability of the lock, the error signal needs to be measured over long enough

period of time, that the Allan deviation reaches a bottom limit, then it starts to

increase. As our dataset is not long enough, we can not determine the true stability

of our lock.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

The main goal of this thesis project is to stabilize a laser to an atomic reference using

a microcontroller. To achieve this goal, we reviewed several key elements related to

this study. First, we presented the principles of optical spectroscopy and how to

obtain narrow spectral features that are free from Doppler broadening due to the

temperature of the atoms. We discussed rubidium gas and its electronic structure,

as this serves as an absolute atomic reference for locking our laser. Using our vapour

cell rubidium sample, we measured the hyperfine transitions on the D2-line at 780

nm using Doppler-free spectroscopy. We identified several absorptions peaks in 85Rb

and 87Rb, and used the strongest crossover peaks to calibrate the frequency scan of

the laser.

We then showed how, by combining a lock-in amplifier and a frequency-modulated

absorption spectrum, we can generate an error signal that is proportional to the

laser’s deviation from the target frequency. The error signal features a zero-crossing

at the peak of the absorption signal, which is mostly insensitive to environmental

factors. This crucial part of the experiment allows us to precisely lock the laser
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frequency using a PID controller, which enables us to realize a stable optical reference

at 780.24 nm.

The PID controller is implemented using a commercial microcontroller (an Ar-

duino DUE) with built-in 12-bit ADCs and DACs. We designed and built an analog

conditioning circuit to rescale the voltage range of the input and output signals used

with the microcontroller. This circuit was implemented on a printed circuit board

and assembled in a shielded chassis to reduce ambient electronic noise.

Following an initial demonstration of the lock, we characterized the performance

of the lock in several ways. First, we tuned the PID controller to find the optimum

values for the proportional and integrator gains (we set derivative gain to zero).

Then we measured the PSD and the Allan deviation of the error signal to determine

the noise characteristics and the short- and long-term stability of the locked laser.

From the PSD, we found that the noise is limited by pink noise (i.e. 1/f noise) at

frequencies in the range of 1 - 100 kHz. Above these frequencies, the error signal is

dominated by white noise. In terms of the fractional frequency variation of the laser,

we measured a noise floor of 5× 10−14/
√

Hz.

The Allan deviation of the error signal shows a 1/
√
τ dependence for our measured

timescales (up to 120 s), which is consistent with white noise. From this Allan

deviation, we find a short-term fractional frequency stability of 1.3 × 10−11 at 1 s,

and a medium-term stability of 2.7×10−12 around 90 s. Both of these values indicate

that the laser is extremely stable over medium periods. Longer data sets are required

to determine the limiting behaviour of the lock.

5.2 Future Work

As for the current stage, more data will be gathered to have a better characterization

of the lock; testing more gain sets and analyzing the lock’s stability over long periods
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to find its absolute stability.

This work has highlighted how simple and intuitive it is to implement control

algorithms with an Arduino. For future stages, we are already considering how this

powerful tool can be used for a variety of other applications in our laboratory. With

respect to the laser lock, we are planning several improvements. First, the PID pro-

gram will be optimized more, to ensure faster handling of incoming data, increasing

its bandwidth/decrease its loop time. Then, with a more optimized program we will

be able to implement more sophisticated logic, increasing the flexibility and robust-

ness of the lock to external changes. If the bandwidth of the improved system allows,

the Arduino will generate the error signal replacing the lock-in amplifier. Second,

we will investigate more robust (and less time consuming) methods for determining

the optimum combination of gains for the PID controller. One such method would

include solving for the gains analytically. Finally, we will try alternate methods for

generating the error signal (e.g. polarization spectroscopy [19]) that do not require

frequency modulation or a lock-in amplifier.
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